終末 A.I.

Deep Learning を中心に、週末に機械学習するエンジニアのブログ

第6回CiNetシンポジウムを聴講してきたよ

本日グランフロント大阪にて開催された、第6回 CiNetシンポジウム「おもろい脳科学」を聴講してきました。 脳科学はテレビや本で紹介されている以上の情報は知らなかったので、人工知能分野の研究成果を理解するには何が話題になっているかくらいはおさえておきたいと思い行ってきたしだいです。

個人的にはとても刺激的なお話を聞くことができました。詳しい方には物足りないかもしれませんが、私みたいにこの分野の情報を得たいという方には、濃い時間であったことは間違いないかなと思います。大阪と東京で一年交代で、毎年このような質の高いシンポジウムを無料で開催してくださっているらしく、CiNet さん、ありがとうございます。ぜひこれからも続けてください。

さて、せっかく聞いてきたので、忘れないうちに概要をまとめてみようと思います。

エキスパートの直感思考の仕組み

最初は、田中啓治先生のご講演でした。テーマは、エキスパートの直感思考はどのような仕組みで生まれているのかというものです。内容としては、 エキスパートの直観を司る脳の仕組み | 理化学研究所にあがっているものとだいたい同じようなものになります。

エキスパートとアマチュアの一番の違いは、読みの深さや処理の速さではなく、最善手が直感的に思いつく能力と、ゲーム中に出てくる盤面を瞬間的に知覚できる能力である。このことが70年代頃までに心理学の知見として得られていたそうです。

アマチュアは盤面を見てもすぐには最善手を思いつかず、エキスパートは盤面を見た瞬間すぐに最善手を思いつく。また、プロは場面を複数のコマのまとまった配置として把握するため、通常7つのパーツの組み合わせまでしか覚えられないような一時記憶で、盤面全体を把握できているとのことでした。さらにこの複数のコマをまとめて把握するという能力は、これらのコマの組み合わせと最善手を結びつけて覚えることにより、最善手を瞬時に閃くことにも貢献しているとの事のようです。

脳科学的なアプローチからこの直感を分析した結果、基底核と呼ばれる脳の奥の方にある部分が活性化することにより直感を生み出しているのではないかと考えられるそうです。この基底核はトレーニングを積むことにより回路を鍛えることができ、特徴的な刺激に対して反応を返すようになれるそうです。つまり、直感はトレーニングによって鍛えることができるとのことのでした。

スポーツと脳

次は、内藤栄一先生のご講演でした。テーマは、スポーツと脳の関係についてです。内容としてはだいたい新技術:ネイマールのテクニックの秘密は脳にある? 先端技術で解析 (1/2) - EE Times Japanに記載されているようなものをお話されていました。

ネイマール選手と他の選手を比べてわかったこと。それは、状況に対する想像力と、特定の活動を行う際に脳全体の活動量が小さいことが、トリッキーなパフォーマンスを生み出す鍵だということだそうです。

状況に対する想像力とは、例えば、ディフェンダーと対峙している場面を見てもらい、どのようにその場面を切り抜けるかを何パターンも考えてもらい、どれだけそれが具体的か、またその時どれだけ脳が活動しているかで測ります。ネイマール選手は、具体的なテクニック名を次々とあげることができ、脳の活動も他選手と比べ非常に活発であったようです。

一方、特定の活動時に脳の活動量が小さいとはどういうことかというと、足の先を動かすようなサッカーではよくある動作を行っている状態での脳の活動状態を計測したところ、ネイマール選手は、運動をするために一部の重要な部位しか活動しておらず、他の部分はほとんど活性化していなかったということのようです。身体運動は一般的に、脳のゆらぎによるノイズが発生し成果が安定しません。しかしネイマール選手の場合は、そのノイズとなる脳活動がほとんどなく機械的に特定の運動を行えるようになっており、動きの精度が非常に高くなっていると考えられるとのことでした。

脳派から自分の無意識を知る

成瀬康先生のご講演のテーマは、脳波から自分の無意識を知るというものでした。内容としては、 IEEEがプレスセミナーを開催 『ヒューマンインタフェースと脳科学の行方』|プレスリリース配信サービス【@Press:アットプレス】に記載されている、英語のリスニングの事例が主でした。

この英語のリスニングの事例では、LとRの聞き分けは脳レベルではそれなりに行えているというところからスタートします。ただしその時に発生する脳波の違いがわずかな場合は、その違いを意識することができていません。脳波の違いが大きくなった状態で、初めて聞き分けられるようになっていると言えるわけです。

紹介いただいた研究では、脳波を大きくすることを学習することにより聞き分けられるようになるかというものです。具体的には、LとRの発音の違いにより変化する脳波を得点化し、ユーザにゲーム感覚でその得点を最大化するように取り組んでもらったところ、LとRの聞き分けもできるようになったとのことでした。

脳の知覚の可視化

西本伸志先生によるご講演のテーマは、脳の認知内容をデコードするというものでした。内容としては、夢や空想を視覚化する研究はAIでさらに進化するのか ーワークショップ「人工知能による科学・技術の革新」ー - WirelessWire News(ワイヤレスワイヤーニュース)に記載されているものとだいたい同じになります。人工知能に興味がある人は似たような感じだと思いますが、個人的にはこの講演が一番興味深かったです。

概要としては、ある知覚をしている時の脳の活動情報を取得することにより、情報と脳の知覚のエンコーダーデコーダーを生成しようというものになります。本日はデコーダーについて主に話されていましたが、視覚再現地図があると言われている後頭葉の情報から今見ているものの画像を生成したり、物体に反応する部位があると言われている側頭葉の反応状況から脳内で知覚がどのように認識されているか、どのような関係として知覚されているかを抽出することができたとのことです。

具体的な内容はリンクの写真を見てもらうのが早いので割愛しますが、個人的には、脳が処理している内容を科学的にデコードでき得るということは、人工知能にとっては良いニュースだなと思いました。デコーダーができるということはエンコーダーもできることとほぼイコールなのですから、人工知能に必要となる脳活動を測定するというアプローチからも人工知能にせまることができるのです。構造をまねるという話は良く聞きますが、実際に使用されている数理モデルそのものを移植することができる可能性は、場合によっては最短距離で人工知能へ到達する道になるかもしれません。

ロボットのココロ

トリは、浅田稔先生のご講演でした。テーマはロボットのココロについて。内容としては、ロボットで探る人間の不思議(大阪大学・浅田稔教授) 2013/5/1 | WAOサイエンスパークの動画を見ていただくと把握できるものとだいたい同じものになります。

浅田稔先生はロボット工学がご専門で、ロボットを使用しての人工知能の実現を目指されている方という認識でしたが、脳科学からのアプローチもされているとは知りませんでした。本日の講演は、ロボットにココロを持たせるにはどうするのがよさそうかを、赤ちゃんの発達過程と人間が心と知性をどう認識しているかからご説明いただきました。

盛りだくさんすぎて内容をまとめにくいのですが、一言で言うならば人の心とは周囲との相互作用により発達していくものなので、ロボットにココロを持たせるにもそれが必要であろうということです。また、人間には心と知性を別のものとして認識する機構があり、ロボットにもそれが必要だよね、というようなお話でした。

まとめ

以上で、私のつたない言葉によるシンポジウムのまとめは終わりです。今日のシンポジウムのように人間の脳に何かしらの知覚構造があると理解するのは、自分が夢想している人工知能という課題が決して夢物語ではなく、いつか実現できるものであるということが実感できてとても良い機会でした。今まで知らなかった研究内容も知ることができますし、一石二鳥なイベントでした。

もし研究内容に興味を持たれたならば、ぜひ、それぞれのリンク先の記事や関連記事を読んでみることをおすすめします。